
1.  Introduction
As the climate warms, the risk of disruption to human and natural systems increases. Changes to hydro-
climate, particularly drought risk, have the potential to negatively affect lives, livelihoods, and ecosystems. 
Changes to major drivers of drought, including temperature (Bindoff et al., 2013), atmospheric water vapor 
(Santer et al., 2007), and precipitation (Marvel & Bonfils, 2013; Zhang et al., 2007) have already been de-
tected and robustly attributed to human activity. Recent work has identified human influences on historical 
global drought trends (Marvel et al., 2019), on large-scale aridity trends (Bonfils et al., 2020) and the severity 
of individual regional droughts (Kelley et al., 2015; Williams et al., 2020). In the absence of major emissions 
reductions, these trends will continue to intensify; climate models project coherent changes to many aspects 
of the global hydrological cycle in the presence of elevated atmospheric 2CO  levels (Cook et al., 2020).

Despite the established work to date, there is still substantial uncertainty in projecting and understanding 
future hydroclimate changes (Hegerl et al., 2015; Sarojini et al., 2016), particularly at the smaller regional 
scales that are critical for adaptation decisions (Stott et al., 2010). There are several reasons for this. Even 
state-of-the-art general circulation models struggle to reproduce aspects of the observed hydrological cycle, 
especially precipitation (Levy et al., 2013; Marvel et al., 2013; Schneider et al., 2014; Tian & Dong, 2020). Cli-
mate models do not necessarily agree on the magnitude or sign of regional hydroclimate changes, and even 
robust regional trends may be difficult to identify against a backdrop of internal or naturally forced climate 
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changes become detectable above the background noise of internal variability depends strongly on the 
future scenario considered, and significant changes to the annual cycle are largely avoided in the lowest-
forcing scenario.

Plain Language Summary  State-of-the-art climate models project substantial changes to the 
climate of the continental United States (CONUS). Models project changes to the yearly average rainfall, 
soil moisture, and runoff in many regions. But crucially, they also project changes to the annual cycle, 
with peaks in evaporation, runoff, and soil moisture projected to shift earlier in the year even if the yearly 
averages of those quantities do not change. While different climate models disagree on the exact nature 
of many shifts, a large source of uncertainty is human behavior and policy choices, and many significant 
changes can be avoided if greenhouse gas emissions fall drastically in the future.
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variability (Bindoff et al., 2013; Cook et al., 2018; Stott et al., 2010). Projections of drought risk vary with the 
definition of drought used: changes to meteorological drought (a lack of rainfall) may differ from changes 
to agricultural (soil moisture) or hydrological (runoff) drought. Even within these categories, different var-
iables are projected to respond differently to warming. For example, moisture may increase throughout the 
full soil column while drying at the surface (Berg et al., 2017), and evaporative demand from the warming 
atmosphere may be partially or fully offset by shifts in plant physiological response, resulting in quantita-
tively and qualitatively different responses depending on the variable considered (Bonfils et al., 2017; Man-
kin et al., 2019; Milly & Dunne, 2016; Swann et al., 2016).

Finally, in many regions, hydroclimate follows an annual cycle, with distinct wet and dry seasons. Even in 
areas where precipitation is relatively evenly distributed throughout the year, annual cycles in temperature, 
runoff, and evaporation can also shape annual cycles in soil moisture, both at the surface and throughout 
the soil column. Perturbations to this seasonality can have large societal impacts and compounding effects 
across multiple variables, even if there are no substantial changes to annual mean variables. It is therefore 
crucial for adaptation and planning purposes to quantify and understand shifts to both the amplitude and 
phase of the annual cycle.

Previous work has focused on understanding the mechanisms that underlie externally forced shifts in the 
amplitude of the annual cycle of different variables. Climate models project a weakened temperature annu-
al cycle globally, due in large part to the disappearance of sea ice (Dwyer et al., 2012; Mann & Park, 1996; 
Santer et al., 2018). The amplitude of the annual cycle of precipitation, by contrast, is expected to increase 
on global scales (Chou & Lan, 2012; Dwyer et al., 2014; Marvel et al., 2017). In the absence of substantial 
changes to the atmospheric circulation, atmospheric water vapor increases by roughly 7 percent per degree 
Celsius of warming; global rainfall increases by only 2–3 percent per degree Celsius (Allen & Ingram, 2002; 
Pendergrass & Hartmann,  2014; Wentz et  al.,  2007) because of limits imposed by energetic constraints 
as well as moisture availability (O’Gorman & Schneider,  2009). On large scales, this creates a temporal 
“wet-get-wetter” effect, in which precipitation is expected to increase in wet seasons and decrease in dry 
seasons (Chou & Lan, 2012; Marvel et al., 2017). As with the spatial wet-get-wetter mechanism (Held & 
Soden, 2006), however, this simplification does not necessarily hold at regional scales, where local atmos-
pheric dynamics, soil moisture holding capacity, and biogeochemical processes are important (Byrne & 
O’Gorman, 2015).

Models also project large-scale phase changes to many aspects of the hydrological cycle, including earlier 
snowmelt (Barnett et al., 2008) and spring phenology (Scranton & Amarasekare, 2017) and delayed rain-
fall onset in many monsoon regions (Neelin et al., 2003; Seth et al., 2013). Some of these trends and their 
consequences, such as earlier vegetation activity (Parmesan & Yohe,  2003) and elevated fire risk (West-
erling, 2016), have been robustly detected in observations, but trends in many regions remain uncertain, 
reflecting complex seasonal interactions between multiple changing variables.

In this study, we examine future regional changes to the hydroclimate of the continental United States (CO-
NUS). We report changes to both annual averages and annual cycles projected by the models participating 
in the most recent phase of the Coupled Model Intercomparison Project (CMIP6) and address three primary 
research questions: (a) What are the projected changes to meteorological, agricultural, and hydrological 
drought across different CONUS regions? (b) How will the annual cycle of hydroclimate in these regions 
change in the future? and (c) How does the emergence of a signal of forced change differ across different 
future forcing scenarios?

2.  Methods
We investigate changes in eight monthly mean drought variables in the CMIP6 models: near-surface air 
temperature (CMIP6 variable name tas), evaporation (evspsbl), total precipitation (pr), the amount of pre-
cipitation that falls as snow (prsn), surface (mrros), and column-integrated total (mrro) runoff, and soil 
moisture at the surface (mrsos) and in the total column (mrso). Table 1 lists the 16 CMIP6 models and 
ensemble members that provided all eight of these diagnostics for the CMIP6 pre-industrial control ex-
periment and each of four future forcing scenarios developed for ScenarioMIP (O’Neill et al., 2016). These 
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include the lowest-forcing scenario (SSP1-2.6), a medium forcing scenario (SSP2-4.5), and high-end forcing 
scenarios (SSP3-7.0 and SSP5-8.5).

The CMIP6 multi-model average (MMA) is calculated by first averaging over ensemble members of a single 
model, and then over results from all models. This ensures that the multi-model averages are not dominated 
by modeling groups that performed large ensembles. The models participating in CMIP6 do not necessarily 
span the entire space of plausible physical parametrizations (Eyring et al., 2016), nor do they constitute an 
independent ensemble. Rather than develop model weighting techniques that, while useful (Sanderson 
et al., 2017), necessarily rely on subjective criteria, we adopt a “one model, one vote” approach (Weigel 
et al., 2010), with the understanding that models may share code, parameterizations, and, in many cases 
entire modeling architectures (Masson & Knutti, 2011). Our amplitude and phase results are not highly 
sensitive to the order of operations; calculating and then averaging the amplitude and phase anomaly time 
series of individual ensemble members (Method A) leads to similar results as calculating the amplitude and 
phase changes of the multi-model average time series of monthly means (Method B). We use Method A in 
this study.

We calculate spatial averages over seven regions defined in Figure 1, designed to approximate the regions 
used in the Fourth National Climate Assessment (Reidmiller et al., 2017).

Each region is defined as a simple rectangle, which means there is some overlap between them. However, 
as these definitions vary and depend on cultural and political boundaries as well as aspects of the physical 
climate system, we elect for the simplicity of this approach for presenting summary statistics rather than 
attempt to replicate, for example, state boundaries. Monthly mean MMA changes in the highest-forcing 
SSP5-8.5 scenario for each region are shown in Figures S1–S7.

We track changes to the regional annual cycle in each variable, using a simple Fourier decomposition in 
each year (Stine et al., 2009). In each spatial region or model grid cell x and for each calendar year y, we 
calculate the mode with period 12 months:
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Reference piControl ssp126 ssp245 ssp370 ssp585

ACCESS-CM2 Dix et al. (2019) 1 1 1 1 1

ACCESS-ESM1-5 Ziehn et al. (2019) 1 3 3 3 3

BCC-CSM2-MR Xin et al. (2019) 1 1 1 1 1

CESM2 Danabasoglu (2019) 1 2 3 2 2

CNRM-CM6-1 Voldoire (2019) 1 6 10 6 6

CNRM-ESM2-1 Seferian (2019) 1 5 5 5 5

CanESM5 Swart et al. (2019) 2 50 50 50 50

EC-Earth3 EC-Earth Consortium (EC-Earth) [2019a] 1 1 1 1 1

EC-Earth3-Veg EC-Earth Consortium (EC-Earth) [2019b] 1 4 3 3 4

GFDL-ESM4 Guo et al. (2018) 1 1 3 1 1

IPSL-CM6A-LR Boucher et al. (2018) 2 6 11 11 6

MIROC-ES2L Tachiiri et al. (2019) 1 3 1 1 1

MIROC6 Shiogama et al. (2019) 1 3 3 3 3

MPI-ESM1-2-HR Schupfner et al. (2019) 1 2 2 10 2

MRI-ESM2-0 Yukimoto et al. (2019) 2 1 5 5 2

UKESM1-0-LL Good et al. (2019) 1 5 5 5 5

Table 1 
The Number of Ensemble Members From Each Model’s ScenarioMIP and Pre-Industrial Control Runs Used to Construct 
the Multi-Model CMIP6 Ensemble and Signal-to-Noise Ratios
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The amplitude is given by

2 2
12 12( , ) Re( ( , )) Im( ( , ))R x y F x y F x y 

  � (2)

and the phase by

1 12

12

Im( ( , )) 365( , ) tan .
Re( ( , )) 2

F x yx y
F x y




     
  


� (3)

We calculate regional amplitude and phase changes by first performing the regional spatial average and 
then calculating the amplitude and phase of the resulting time series; spatially averaging the amplitude and 
phase for each grid cell in a region yields similar results.

To quantify the significance of projected changes against a backdrop of internal variability, we adopt a 
commonly used signal-to-noise framework (Santer et al., 1995, 2011, 2013). Here, the projected signal in 
each future scenario is defined to be the best-fit linear trend in the multi-model average annual mean, 
amplitude, or phase from 2015 to 2100. We compare these to the distribution of 86-year trends that would 
arise from internal variability alone. These are estimated from long time series obtained by concatenating 
the annual mean, amplitude, or phase of each CMIP6 model’s pre-industrial control simulation, in which 
anthropogenic and natural forcings are fixed at their 1,850 values. The noise is defined as the standard devi-
ation of the distribution of linear trends in all overlapping 86-year segments of these time series. The ratio 
of trends in the forced simulations to this noise term measures the forced trends' significance with respect 
to a null hypothesis that they arise purely due to internal variability. A projected signal is significant at the 
IPCC-defined “likely” threshold at 66% confidence, “very likely” at 90% confidence, and “virtually certain” 
at 99% confidence.

3.  Results
3.1.  Multi-Model Ensemble Average Trends

Figure 2 shows the projected 2015–2100 annual mean signal-to-noise ratios in each of the four scenarios.

In all regions, annual mean temperature robustly increases, with the warming signal detectable at high con-
fidence in all scenarios (For visual clarity, we do not show these results because the signal-to-noise ratio is so 
large that its inclusion requires y-axis limits that obscure changes in other variables). Higher temperatures 
also reduce the total amount of precipitation falling as snow, but detectable changes to annual mean snow 
at the “very likely” level are avoided in the low-emissions scenario SSP1-2.6. However, despite reductions in 
snowfall, no region in the continental US is projected to experience a decrease in total precipitation. In fact, 
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Figure 1.  Geographical regions considered in this study: the Pacific Northwest (NW), southwest (SW), upper Great 
Plains (GPu), lower Great Plains (GPl), Midwest (MW), Northeast (NE), and Southeast (SE).
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under the highest emissions scenario, the models project a detectable increase in annual mean precipita-
tion in four of the seven CONUS regions (the Northwest, Midwest, Northeast, and the Southeast). Annual 
mean evaporation increases are also apparent in these regions and in the upper Great Plains. Total and 
surface runoff changes are small in all regions except for the Southeast, where surface runoff is projected 
to increase. Only in the Lower Great Plains are there changes in annual mean total column-integrated soil 
moisture that exceed the “likely” threshold, and then only in the highest-forcing scenario. Total surface soil 
moisture decreases in every region, but the trend significance varies with region and forcing scenario.

Figure 3 shows projected changes to the amplitude of the annual cycle for each variable, scenario, and re-
gion. Every region is expected to experience decreased snowfall with warming and, because snow falls only 
in late fall through early spring, this translates to a decrease in the amplitude of the snow annual cycle. In 
the northern regions, models project an increase in the amplitude of the annual cycle of total column soil 
moisture that exceeds the “virtually certain” level in the two highest-forcing scenarios. In the Southwest, 
by contrast, the only detectable changes are to the amplitude of the annual cycle in surface soil mois-
ture, which decreases. The amplitude of the annual cycle in precipitation increases in the Northwest and 
Southeast (although the climatological annual cycle in the latter region is both less regionally coherent and 
weaker in the latter region). The amplitude of the surface runoff annual cycle decreases in the Northwest, 
Southwest, and Great Plains, and increases in the Southeast; the amplitude of the total runoff annual cycle 
increases in the Midwest and Northeast.

Figure 4 shows projected changes to the phase of the annual cycle for each variable, scenario, and region. 
The only detectable changes are all in the negative direction: that is, in the future, the peak of many aspects 
of the water cycle is projected to arrive earlier. Evaporation phase shifts are detectable only in the northern 
regions, reflecting the roles of decreased snow cover, the increased evaporative demand that accompanies 
warming, and possibly an earlier start to the growing season. Shifts toward earlier peak rainfall are largest 
in the upper Great Plains and Midwest, and there are large differences between the SSP1-2.6 (in which 
changes are not significant) and SSP2-4.5 scenarios. Earlier snowpack melting combined with increases in 
wintertime precipitation, more of which falls as rain, mean that peak runoff in western regions is projected 
to shift earlier. Phase shifts in soil moisture in the northern and southwestern regions, most significantly in 
total soil moisture, only cross the “virtually certain” threshold in the highest-forcing scenario.
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Figure 2.  Signal-to-noise ratio for the annual mean of seven hydrological variables in four future scenarios spanning 2015–2100. Colors correspond to SSP1-2.6 
(blue), SSP2-4.6 (green), SSP3-7.0 (orange), and SSP5-8.5 (red). We denote variables and regions where the signal-to-noise ratio never exceeds the IPCC “likely” 
standard (66% confidence) by a black cross.
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3.2.  Robust Regional Trends in CMIP6

The results reported above are obtained from the average over multiple CMIP6 models. However, given 
the diverse treatments of the land surface (Hurk et al., 2016), a wider range of climate sensitivities (Meehl 
et al., 2020; Zelinka et al., 2020), and new parametrizations adopted by the CMIP6 climate models (Eyring 
et al., 2016), substantial inter-model differences might be expected. Moreover, climate models display bias-
es: historically, they have struggled to reproduce precipitation (Scheff & Frierson, 2012; Tian & Dong, 2020), 
evapotranspiration (Mueller & Seneviratne,  2014), and runoff (Lehner et  al.,  2019) patterns at multiple 
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Figure 3.  As in Figure 2, but for the amplitude of the annual cycle.

Figure 4.  As in Figure 2, but for the phase of the annual cycle.
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spatial (Marvel et al.,  2013) and temporal (Sillmann et al.,  2013) scales. However, despite model errors, 
CMIP6 models largely agree on many aspects of projected change, especially the most significant trends.

Figure 5 shows the CMIP6 model ensemble average regional SSP5-8.5 trends in the annual mean (blue), 
amplitude (orange) and phase (green) of the annual cycle. In order to plot variables of different units on the 
same scale, each model trend has been normalized by the same noise term obtained from the long concate-
nated pre-industrial control simulations. There are many areas where models agree on the trends in annual 
mean variables: robust declines in snow are projected everywhere, and precipitation changes are robustly 
positive in the Northeast and Midwest. Inter-model spread in total soil moisture trends is relatively small, 
despite the vastly different column depths used in CMIP6 models. However, substantial model disagree-
ment persists, particularly in rainfall in the western regions and in the magnitude and even the sign of the 
total evaporation. Trends in regional annual cycles, however, are much more coherent across models. For 
example, while there is substantial model spread in annual mean precipitation trends in the upper Great 
Plains, the negative phase shift is robust across models. As a result, the amplitude of the total soil moisture 
annual cycle also robustly increases in models. Despite a large model spread in annual mean evaporation 
projections, most models project earlier peaks in evaporation across the northern regions.

CMIP6 models show a remarkable degree of coherence in the most significant hydroclimate projections. We 
define a significant effect to be a change to the annual mean, amplitude, or phase of the annual cycle that, 
in the multi-model average, exceeds the background of internal climate variability at the “virtually certain” 
level by 2100 in at least one future scenario. These regional effects are summarized in Tables 2–8, along with 
the fraction of the 16 CMIP6 models analyzed in which the signal is virtually certain to be detectable in 2100 
in at least one scenario (Fsig) and the fraction of models in which the trend is of the same sign (Fagree). In 
some cases, individual CMIP6 models project large changes that are significant at high confidence levels 
but are of opposite sign to the multi-model average trends; the fraction of models in which this is the case 
is reported as Fopp.

3.2.1.  Northwest

In the Northwest, as in most other regions, every CMIP6 model projects reductions in the annual mean 
snowfall, as well as in the amplitude of the snow annual cycle. Phase shifts in the column soil moisture, 
surface and total runoff, and evaporation are similarly robust, with over 80% of the models agreeing at least 
on the sign of the shift. Models disagree most on the annual mean evaporation, which increases in the mul-
ti-model average but is projected to decrease in three models (EC-Earth3, EC-Earth3-Veg, and MRI-ESM2-0).

3.2.2.  Southwest

CMIP6 models largely agree on the most significant projections for the Southwest region (Table 3). Over 
half the models project significant decreases in surface soil moisture and its annual cycle, and earlier peaks 
in surface and total runoff are also robust across models. No CMIP6 model projects a detectable change of 
the opposite sign to the multi-model average.

3.2.3.  Upper Great Plains

The degree to which models agree is perhaps even more pronounced in the upper Great Plains region 
(Table 4). Here, 100% of CMIP6 models analyzed here project an earlier peak in precipitation, with the 
change detectable above internal variability at the “virtually certain” level in all but one model (in which it 
is detectable at the “very likely” level). There is virtually no disagreement among CMIP6 models that peak 
evaporation in this region will arrive earlier, that the amplitude of total soil moisture and surface runoff will 
decrease, and that the region will experience surface soil moisture drying, although models disagree on the 
severity of the latter effect.

3.2.4.  Lower Great Plains

Fewer significant changes are projected for the lower Great Plains region (Table 5). Models largely agree 
that surface and total soil moisture will dry in the future, but disagree on how significant these changes will 
be with respect to internal climate variability.
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3.2.5.  Midwest

In the Midwest, as in the adjacent upper Great Plains region, all CMIP6 models project that peak precipita-
tion will shift earlier in the year (Table 6), and most models agree that the annual mean precipitation will 
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Figure 5.  Box-and-whisker plots showing CMIP6 inter-model spread in SSP5-8.5 trends in the annual mean (blue), 
amplitude (orange) and phase (green) of the annual cycle. The boxes show the quartiles of the datasets while the 
whiskers represent the interquartile range multiplied by 1.5. Only the first ensemble member of each model is included 
in this calculation.
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increase. Despite this, all models project drying in the annual mean surface soil moisture. While most mod-
els project that the annual mean evaporation will increase, three outliers (as in the Northwest and, below, in 
the Northeast) project significant decreases. Models also agree on the sign, if not necessarily the magnitude, 
of changes to surface and column-integrated soil moisture.

3.2.6.  Northeast

In the Northeast, all 16 models analyzed agree on the sign of all significant projected changes (Table 7) ex-
cept for those to evaporation, which three models (as in the Midwest and Northwest, EC-Earth3, EC-Earth3-
Veg, and MRI-ESM2-0) project will significantly decrease and one model (ACCESS-ESM1-5) projects will 
peak later.

3.2.7.  Southeast

Finally, in the Southeast, models largely agree on the signs (earlier peaks in total and surface runoff, de-
creases in annual mean and the annual cycle amplitude of surface soil moisture) of projected trends (Ta-
ble 8), although significant changes are not projected in every model.

4.  Discussion
The results presented in the previous section indicate that (a) models agree on many robust regional chang-
es to the hydroclimate of the continental United States and (b) significant changes to aspects of the annual 
cycle may arise even in the absence of changes to annual mean quantities. In this section, we show that 
understanding projected changes to the annual cycle can help to identify connections between variables 
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Variable Effect sigF agreeF oppF

Surface soil moisture Annual mean decreases 0.5 0.9375 0.0

Column-integrated soil 
moisture

Annual cycle amplitude 
increases

0.6875 0.8125 0.0625

Peak arrives earlier 0.5 0.9375 0.0

Surface runoff Peak arrives earlier 0.6875 0.8125 0.0625

Total runoff Peak arrives earlier 0.75 0.9375 0.0625

Evaporation Annual mean increases 0.6875 0.75 0.1875

Peak arrives earlier 0.6875 1.0 0.0

Precipitation falling as snow Annual mean decreases 1.0 1.0 0.0

Annual cycle amplitude 
decreases

1.0 1.0 0.0

Table 2 
Significant Effects Projected by CMIP6 Models for the Northwest, the Fraction sigF  of Models in Which the Signal is “Virtually Certain” to Emerge by 2100, the 
Fraction agreeF  of Models in Which the Trend is of the Same Sign, and the Fraction oppF  of Models That Project Significant Changes of the Opposite Sign

Variable Effect sigF agreeF oppF

Surface soil moisture Annual mean decreases 0.625 0.8125 0.0

Annual cycle amplitude decreases 0.625 0.9375 0.0

Surface runoff Peak arrives earlier 0.75 1.0 0.0

Total runoff Peak arrives earlier 0.6875 0.9375 0.0

Precipitation falling as snow Annual mean decreases 1.0 1.0 0.0

Annual cycle amplitude decreases 1.0 1.0 0.0

Table 3 
Significant Effects Projected by CMIP6 Models for the Southwest, the Fraction sigF  of Models in Which the Signal is “Virtually Certain” to Emerge by 2100, the 
Fraction agreeF  of Models in Which the Trend is of the Same Sign, and the Fraction oppF  of Models That Project Significant Changes of the Opposite Sign
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and advance understanding of the underlying physical drivers of change. Hydrological and agricultural 
drought risks are shaped by changes in moisture supply and demand, but the timing of these changes and 
how they intersect with existing seasonal patterns may lead to different projections for runoff and soil mois-
ture, and different management strategies.

4.1.  Precipitation and Evaporation

Figure 6 shows projected changes to the timing and amount of precipitation and evaporation in the high-
est-forcing SSP5-8.5 scenario. In the multi-model average, precipitation is projected to increase outside the 
southernmost regions, and models largely agree on the sign of these changes in the eastern and western 
portions of the country. These wet trends are accompanied by increased evaporation in the same regions. 
Changes to the annual cycle amplitudes, however, reveal differences in the temporal structure of these 
changes. The amplitude of the precipitation annual cycle increases in the Northwest and Southeast, as more 
precipitation falls in the winter-wet season. The evaporation annual cycle, by contrast, decreases nearly 
everywhere in the multi-model average, and there is a high degree of inter-model agreement on this trend 
in the central regions. This indicates that evaporation increases are largest outside the peak summer season. 
In northern regions, there are shifts (Figure 6f) to earlier peak evaporation that may be associated with re-
ductions in snow cover and warmer temperatures that in turn allows for photosynthesis and transpiration 
to begin earlier in the year (Mankin et al., 2017). In southern regions evaporation remains unchanged or 
even decreases in the summer: temperature-driven evaporative demand increases, there is no compensating 
increase in precipitation, runoff is negligible, and the soil becomes simply too dry to lose any more mois-
ture. The patterns of projected phase shifts in moisture supply and demand are largely similar, with earlier 
peaks in precipitation projected in the northern and central regions. Notably, while no changes to total 
precipitation are projected in the Midwest and upper Great Plains, models robustly project an earlier shift of 
the precipitation annual cycle in these regions. Here, a large proportion of annual mean precipitation falls 
in spring and summer, with mesoscale convective systems contributing the bulk of warm-season rainfall 
(Schumacher & Rasmussen, 2020). The projected phase shift in this precipitation may be associated with 
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Variable Effect sigF agreeF oppF

Surface soil moisture Annual mean decreases 0.5625 1.0 0.0

Column-integrated soil moisture Annual cycle amplitude increases 0.6875 0.875 0.0

Surface runoff Annual cycle amplitude decreases 0.5 0.875 0.0

Evaporation Peak arrives earlier 0.8125 1.0 0.0

Precipitation falling as snow Annual mean decreases 1.0 1.0 0.0

Annual cycle amplitude decreases 0.9375 1.0 0.0

Precipitation Peak arrives earlier 0.9375 1.0 0.0

Table 4 
Significant Effects Projected by CMIP6 Models for the Upper Great Plains, the Fraction sigF  of Models in Which the Signal is “Virtually Certain” to Emerge by 2100, 
the Fraction agreeF  of Models in Which the Trend is of the Same Sign, and the Fraction oppF  of Models That Project Significant Changes of the Opposite Sign

Variable Effect sigF agreeF oppF

Surface soil moisture Annual mean decreases 0.625 0.875 0.0

Column-integrated soil moisture Annual mean decreases 0.125 0.875 0.0

Precipitation falling as snow Annual mean decreases 0.875 1.0 0.0

Annual cycle amplitude decreases 1.0 1.0 0.0

Table 5 
Significant Effects Projected by CMIP6 Models for the Lower Great Plains, the Fraction sigF  of Models in Which the Signal is “Virtually Certain” to Emerge by 2100, 
the Fraction agreeF  of Models in Which the Trend is of the Same Sign, and the Fraction oppF  of Models That Project Significant Changes of the Opposite Sign
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warming temperatures that increase convective available potential energy (Diffenbaugh et al., 2013; Seeley 
& Romps, 2015) earlier in the year or an intensification of the low-level jet (Tang et al., 2017), but despite 
their different resolutions and climatologies, all CMIP6 models considered robustly project wintertime pre-
cipitation increases and decreases throughout the late spring and summer.

4.2.  Runoff

These changes have implications for hydrological drought risk. Figure 7 shows projected changes to the tim-
ing and amount of surface and total runoff. Broadly, under SSP5-8.5, annual mean runoff decreases sharply 
in the northern and western regions and increases in the south and east. This spatial pattern is driven 
largely by the timing of projected changes in precipitation and the role of snow (Barnett et al., 2008). West 
of the Rockies, winter is the wettest season, and runoff has historically peaked in spring with the melting 
of the mountain snowpack (Lehner et al., 2019; Milly et al., 2005; Wood et al., 1997). A projected increase 
in wintertime precipitation does not translate into increases in springtime runoff, because far less of this 
precipitation falls as snow and the mountain snowpack consequently decreases. There is a robust decrease 
in the annual cycle amplitude and a phase shift toward an earlier peak of runoff (surface and total) due to 
the earlier disappearance of this snowpack. However, there is almost no role for mountain snowpack in 
the eastern regions. An increase in precipitation throughout the winter and early spring directly translates 
into increased runoff in the southeast, where snowfall is negligible. In the Northeast, total precipitation is 
projected to increase outside the summer months, and less of this precipitation is expected to fall as snow. 
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Variable Effect sigF agreeF oppF

Surface soil moisture Annual mean decreases 0.8125 1.0 0.0

Column-integrated soil 
moisture

Annual cycle amplitude 
increases

0.75 0.9375 0.0

Evaporation Annual mean increases 0.75 0.8125 0.125

Peak arrives earlier 0.6875 1.0 0.0

Precipitation falling as snow Annual mean decreases 1.0 1.0 0.0

Annual cycle amplitude 
decreases

1.0 1.0 0.0

Precipitation Annual mean increases 0.6875 0.875 0.0

Peak arrives earlier 0.375 1.0 0.0

Table 6 
Significant Effects Projected by CMIP6 Models for the Midwest, the Fraction sigF  of Models in Which the Signal is “Virtually Certain” to Emerge by 2100, the 
Fraction agreeF  of Models in Which the Trend is of the Same Sign, and the Fraction oppF  of Models That Project Significant Changes of the Opposite Sign

Variable Effect sigF agreeF oppF

Surface soil moisture Annual mean decreases 0.8125 1.0 0.0

Column-integrated soil moisture Annual cycle amplitude increases 0.625 1.0 0.0

Total runoff Annual cycle amplitude increases 0.5625 1.0 0.0

Evaporation Annual mean increases 0.875 0.875 0.125

Peak arrives earlier 0.4375 0.875 0.0625

Precipitation falling as snow Annual mean decreases 1.0 1.0 0.0

Annual cycle amplitude decreases 1.0 1.0 0.0

Precipitation Annual mean increases 0.9375 1.0 0.0

Table 7 
Significant Effects Projected by CMIP6 Models for the Northeast, the Fraction sigF  of Models in Which the Signal is “Virtually Certain” to Emerge by 2100, the 
Fraction agreeF  of Models in Which the Trend is of the Same Sign, and the Fraction oppF  of Models That Project Significant Changes of the Opposite Sign
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This leads to an increase in total runoff, but a decrease in springtime surface runoff due to reduced snowfall 
and hence melt-driven runoff.

4.3.  Soil Moisture

Precipitation, evaporation, and runoff changes also shape future agricultural drought risk. Figure  8 
shows projected changes to the timing and amount of surface and column-integrated soil moisture. As 
in the previous generation of climate models (Cook et al., 2015), there are differences between trends at 
the surface and trends deeper in the soil column. Annual mean surface soil moisture dries everywhere 
in most CMIP6 models, although model disagreement is largest in the Southeast. Despite the small and 
uncertain annual mean trends in column-integrated soil moisture, there is a striking contrast between 
column soil moisture amplitude trends in the northern and southern parts of CONUS, particularly in 
the west. This difference is due to changes in the timing of moisture supply, as well as shifts in evapora-
tive demand. In the Northwest, total column soil moisture robustly increases in the winter months and 
remains relatively unchanged otherwise (Figure S1). This is very likely a consequence of the projected 
increase in wintertime precipitation, which leads to an increase in the total soil moisture during the 
main precipitation season (November through March). Moreover, more of this precipitation is projected 
to fall as rain instead of snow (Hamlet et al., 2005; Knowles et al., 2006), actively recharging the soils 
when, historically, it would have been stored as snow and released in a large runoff event in spring (Bar-
nett et al., 2005; Dettinger & Cayan, 1995). This extra moisture can carry through the deeper layers and 
compensate for low rainfall in the summer. The shallow surface layers, by contrast, are more responsive 
to warming than the full soil moisture column, and indeed are responding to large projected temper-
ature increases in every season. Consequently, the surface soil moisture in the Northwest is projected 
by the CMIP6 multi-model average to decrease relatively uniformly throughout the year (Figure S1). 
The surface soil moisture is also responding to seasonal shifts in total surface evaporation, which shifts 
earlier in the year due to reductions in snow cover and warmer temperatures that in turn allows for 
photosynthesis and transpiration to begin earlier in the year (Mankin et al., 2017). In the Southwest, the 
total column soil moisture decreases throughout the year (Figure S2), with the largest declines in the late 
winter and early spring when soil moisture is at its maximum (and hence, a reduction in the amplitude 
of the annual cycle). Little change is projected in annual mean precipitation, with small increases in the 
winter and decreases in the spring, and therefore the region is not projected to benefit from the same 
seasonal increase in moisture supply seen in the Northwest (Cook et al., 2021). The region will similarly 
not see an appreciable phase shift in evaporation: having little snow cover to begin with, vegetation in 
the Southwest will not necessarily experience earlier photosynthesis due to reductions in snow. Moreo-
ver, evaporation is projected to decrease throughout the summer months when surface soil moisture is at 
its lowest. This indicates that in the season of peak evaporative demand, there will be no compensating 
increase in precipitation, and the supply drawn from the surface soil layers will be exhausted. In the 
Northeast (Figure S6) and Southeast (Figure S7), surface soil moisture decreases even as total runoff 
increases. An examination of the seasonality helps to explain this apparent paradox (Cook et al., 2020). 
In the Southeast, a small increase in precipitation in late winter and early spring, almost none of which 
is stored in snowpack, leads to an increase in moisture availability at the time when soil moisture is most 

MARVEL ET AL.

10.1029/2021EF002019

12 of 19

Variable Effect sigF agreeF oppF

Surface runoff Annual mean increases 0.5625 0.875 0.0

annual cycle amplitude increases 0.5625 0.9375 0.0

Precipitation falling as snow Annual mean decreases 0.625 1.0 0.0

annual cycle amplitude decreases 0.875 1.0 0.0

Precipitation annual cycle amplitude increases 0.5625 0.875 0.0

Table 8 
Significant Effects Projected by CMIP6 Models for the Southeast, the Fraction sigF  of Models in Which the Signal is “Virtually Certain” to Emerge by 2100, the 
Fraction agreeF  of Models in Which the Trend is of the Same Sign, and the Fraction oppF  of Models That Project Significant Changes of the Opposite Sign
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saturated. This inundation prevents a decrease in the total column soil moisture in the Southeast, but 
much of it is not stored in the soil column and instead shed as runoff. Meanwhile, increasing temper-
atures and evaporative demand dry the surface soil moisture despite the seasonal increase in rainfall. 
The central portions of the country are the only regions projected to experience little change in total 
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Figure 6.  Multi-model mean projected 2015–2100 trends under SSP5-8.5 in the annual mean (a and b), amplitude (c and d), and phase (e and f) of the annual 
cycle for precipitation and evaporation. Hatching indicates regions where fewer than 75% of models agree on the sign of the trends.
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soil moisture during the wet season, but a large decrease in total soil moisture in the dry season. This is 
largely attributable to seasonal shifts in precipitation. In the upper Great Plains and Midwest, the bulk of 
rainfall occurs during the April-September growing season (Helfand & Schubert, 1995; Walters & Win-
kler, 2001). CMIP6 models project earlier onset and an earlier peak in this rainfall, which translates to 
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Figure 7.  Multi-model mean projected 2015–2100 trends under SSP5-8.5 in the annual mean (a and b), amplitude (c and d), and phase (e and f) of the annual 
cycle for surface and total runoff. Hatching indicates regions where fewer than 75% of models agree on the sign of the trends.
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an earlier peak in total soil moisture. Because the bulk of the supply of moisture, in the form of rainfall, 
arrives significantly earlier, these regions are projected to experience summer drying throughout the soil 
moisture column.
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Figure 8.  Multi-model mean projected 2015–2100 trends under SSP5-8.5 in the annual mean (a and b), amplitude (c and d), and phase (e and f) of the annual 
cycle for surface and column-integrated runoff. Hatching indicates regions where fewer than 75% of models agree on the sign of the trends.
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5.  Conclusions
Our results reveal many coherent changes across sixteen state-of-the-art climate models (Eyring et al., 2016) 
and four future emissions scenarios (O'Neill et al., 2016). They indicate that analyses focusing on annual 
(e.g., Bonfils et al., 2020; Zhang et al., 2007) or seasonal (e.g., Cook et al., 2020) mean changes, while useful, 
may miss important shifts in the amplitude or phase of the annual cycle. These shifts may have real-world 
consequences for water management, agriculture, and other crucial sectors (Seneviratne et al., 2012), and 
can help to illustrate the physical drivers that affect drought risk in different regions. The CMIP6 models 
project slight increases or no significant change to annual mean precipitation throughout the CONUS re-
gions, no significant changes to the precipitation annual cycle amplitude, and substantial phase delays to 
the precipitation annual cycle in only two regions (the upper Great Plains and Midwest). However, CMIP6 
models project all significant shifts in the annual mean and the annual cycle of evaporation, surface and 
total runoff, and surface and total soil moisture, even in the absence of precipitation shifts. Further un-
derstanding the mechanisms that create these shifts to earlier peaks, and confirming that the models are 
indeed accurately simulating these annual cycle changes, is important for future work.

All future projections are highly sensitive to the future scenario used: in no region, and for no variable, is 
there a detectable (at the 90% confidence level) change to the amplitude or phase or the annual cycle in the 
low-forcing SSP1-2.6 scenario. Very few variables other than temperature show annual mean changes that 
exceed this threshold in this scenario. This indicates that the large-scale shifts in the timing and amount of 
these variables projected in the highest-forcing, worst-case scenarios are largely avoidable with aggressive 
mitigation efforts.

In the absence of such mitigation efforts, the United States will need to adapt to multiple significant and 
interlinked changes in hydroclimate. Climate models project not only robust changes in multiple climate 
variables, but significant changes to their annual cycles. Adaptation decisions therefore must consider such 
seasonal shifts, and strategies predicated on existing annual cycles may not be optimal in the future. For 
example, reservoir management strategies organized around managing wintertime flooding and relying on 
spring snowmelt to recharge water supply for the summer may not be appropriate in a climate-changed 
world. Existing planting and harvesting strategies would similarly need to confront potentially different 
growing seasons in the future. The state-of-the-art climate models participating in CMIP6 indicate that 
flexible adaptation strategies, able to cope with shifts in the amount, distribution, and timing of multiple 
climate variables, will be necessary to confront a world in which greenhouse gas emissions continue to 
increase.

Data Availability Statement
All data from CMIP6 simulations used in our analyses are freely available from the Earth System Grid Fed-
eration (https://esgf-node.llnl.gov/search/cmip6/).
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